
Pushing Enterprise Software to the Next Level 
Self-contained Web Applications on In-Memory Platforms

Michał Nosek 
Starcounter AB

Who am I? ▪ Michał Nosek 
Software Engineer, Technical Sales Engineer – Starcounter 
http://starcounter.com 
 

▪ Github: mmnosek 
LinkedIn: https://www.linkedin.com/in/mmnosek 
E-mail: michal@starcounter.com 
Twitter: @mmnosek

http://starcounter.com
mailto:michal@starcounter.com

01
Setting the Stage
 RAM Memory
 Modern WEB
 SCS Architecture

02
In-Memory Application Platform
 Architecture
 Single App
 Integration
 Demo
 Future

On Today’s Agenda

Enterprise Software of Today

Monolith

▪ Bad maintainability
▪ Long builds
▪ Technology lock-in
▪ Long TTM
▪ Poor scalability

Micro-Services

▪ Orchestration
▪ Eventual consistency
▪ Communication problems
▪ Complexity

Wirth’s law

“What Intel giveth, Microsoft taketh away.”

“What Andy giveth, Bill taketh away”

01
Setting the Stage
 RAM Memory
 Modern WEB
 SCS Architecture

02
In-Memory Application Platform
 Architecture
 Single App
 Integration
 Demo
 Future

On Today’s Agenda

RAM Prices
Price of 1MB in USD over time

U
S

D

0,00001

0,00010

0,00100

0,01000

0,10000

1,00000

10,00000

100,00000

1000,00000

Year

1980 1990 2000 2010 2020

https://jcmit.net/memoryprice.htm

Conventional In-Memory

Conventional In-Memory

Pros and Cons

Pros

▪ Getting faster
▪ Better utilised by modern CPUs

Cons

▪ Communication isn’t faster
▪ It’s not durable
▪ Not getting cheaper anymore?

01
Setting the Stage
 RAM Memory
 Modern WEB
 SCS Architecture

02
In-Memory Application Platform
 Architecture
 Single App
 Integration
 Demo
 Future

On Today’s Agenda

Pros and Cons

Pros

▪ Ubiquitous (no native, separate process)
▪ Semantics (content) vs Presentation
▪ Modularity as priority (reusability)

Cons

▪ Still not implemented everywhere
▪ Global scope (one app can break

something in another)
▪ Online requirement

01
Setting the Stage
 RAM Memory
 Modern WEB
 SCS Architecture

02
In-Memory Application Platform
 Architecture
 Single App
 Integration
 Demo
 Future

On Today’s Agenda

source:  
scs-architecture.org

SCS Architecture

SCS Architecture

SCS Architecture

SCS Architecture

System 1 System 2

Pros and Cons

Pros

▪ Modularisation
▪ Maintainability
▪ Loose coupling

Cons

▪ Integration
▪ Common look and feel
▪ Inconsistency

01
Setting the Stage
 RAM Memory
 Modern WEB
 SCS Architecture

02
In-Memory Application Platform
 Architecture
 Single App
 Integration
 Demo
 Future

On Today’s Agenda

In-Memory
Application
Platform 
 
For Building
Self-Contained Systems

General Platform Architecture

Starcounter

Communication 
Palindrom - REST, Web Sockets

Front-end Framework  
React, Polymer

Application 
View Models, Entities, App Logic

In Memory App Platform
Mapping, Persistence, Queries

Traditional Stack vs Starcounter Stack

Data Storage

• In-Memory database
• ACID compliant
• Snapshot isolation
• Flexible

VMDBMS

U.S. Patent No. 8,266,125

Business Logic

• Polyglot
• Simplified
• Platform-agnostic
• Real-time

User Interface

• Web native
• Web socket communication
• Design agnostic
• Thin

Demo:  
Simple SCS app

Integration: Data Level

Starcounter

Model C

App A App CApp B

UI A UI CUI B

Model A Model B

Mapper

Integration: UI Level

Starcounter

Model C

App A App CApp B

UI A UI CUI B

Model A Model B

UI A

UI B

UI C

Outcomes

Pros

▪ Modularisation
▪ Maintainability
▪ Loose coupling
▪ Full and easy integration
▪ Common look and feel
▪ Consistency

Cons

▪ Integration
▪ Different look and feel
▪ Inconsistency
▪ Platform lock-in?

Storage Engine Benchmark

▪ YCSB load 5% writes, 95% reads.

▪ 1 x E5-2680v2, 1 machine (10/20 cores/
threads).

▪ 8 threads: 3.5 mln. Ops/sec.

▪ 16 threads: 5.4 mln. Ops/sec.

▪ c3.8xlarge – 60 GiB RAM, 32 vCPUs

▪ c3.2xlarge – 15 GiB RAM, 8 vCPUs

▪ https://www.ec2instances.info/

Full-Stack Benchmark

▪ 1.5 mln. accounts, 500 K remote clients transfer.

▪ Money between accounts (5%) and read totals
(95%).

▪ Transfer and read operations are mixed randomly.

▪ Starcounter on .NET (1 x EC2 c3.8xlarge): 1 M
OPS.

▪ MariaDB Galera Cluster 5 nodes with Node.js app
server (5 x EC2 c3.2xlarge, EBS root volume and
high network throughput, stored procedures): 55 K
OPS.

▪ Ratio suffers for MariaDB doing more writes.

01
Setting the Stage
 RAM Memory
 Modern WEB
 SCS Architecture

02
In-Memory Application Platform
 Architecture
 Single App
 Integration
 Demo
 Future

On Today’s Agenda

Currently vs Future

Current

Main Memory

Cache

Solid State Disk

Registers

Magnetic Disk

Future

Main Memory

Cache

Non Volatile Memory

Registers

Solid State Disk

Magnetic Disk

Starcounter in the Future

Enterprise
Software of
Tomorrow

▪ Simplified

▪ Near real-time

▪ Easy to maintain

▪ Reusable/modularised

▪ Fully web-based

▪ Fast data

▪ HTAP or HOAP

THANK YOU!
Questions?

