
Integrating Data-Parallel Analytics into Stream-Processing
Using an In-Memory Data Grid

Dr. William L. Bain
ScaleOut Software, Inc.

• Dr. William Bain, Founder & CEO of ScaleOut Software:
• Email: wbain@scaleoutsoftware.com

• Ph.D. in Electrical Engineering (Rice University, 1978)

• Career focused on parallel computing – Bell Labs, Intel, Microsoft

• 3 prior start-ups, last acquired by Microsoft and product now ships as
Network Load Balancing in Windows Server

• ScaleOut Software develops and markets In-Memory Data Grids,
software for:
• Scaling application performance with

in-memory data storage
• Analyzing live data in real time with

in-memory computing

• Thirteen+ years in the market; 450+ customers, 12,000+ servers

About the Speaker

2In-Memory Computing Summit North America 2018

Agenda

How In-Memory Computing Creates the Next Generation in
Stream-Processing
• Goals and challenges for stream-processing
• Adding context: stateful stream-processing
• Overview of in-memory data grids (IMDGs)
• Digital twin model for stateful stream-processing
• Why use an IMDG: integrated event processing and data-parallel analysis
• Example use cases
• Detailed code sample: runners with smart watches
• Performance benefits

3In-Memory Computing Summit North America 2018

Goals for Stream-Processing

• Goals:
• Process incoming data streams from many (1000s) of sources.
• Analyze events for patterns of interest.
• Provide timely (real-time) feedback and alerts.
• Provide data-parallel analytics for aggregate

statistics and feedback.

• Many applications:
• Internet of Things (IoT)
• Medical monitoring
• Logistics
• Financial trading systems
• Ecommerce recommendations

4

Event Sources

In-Memory Computing Summit North America 2018

Example: Ecommerce Recommendations

1000s of online shoppers:
• Each shopper generates a clickstream of

products searched.
• Stream-processing system must:

• Correlate clicks for each shopper.
• Maintain a history of clicks during a shopping

session.
• Analyze clicks to create new recommendations

within 100 msec.

• Analysis must:
• Take into account the shopper’s preferences and

demographics.
• Use aggregate feedback based on collaborative

shopping behavior.

5In-Memory Computing Summit North America 2018

Providing Recommendations in Real Time

• Requires scalable stream-processing to analyze each click and respond in <100ms:
• Accept input with each event on shopper’s preferences.
• Provide aggregate feedback on best-selling products.

6In-Memory Computing Summit North America 2018

Providing Aggregate Metrics

• Must aggregate statistics for all
shoppers:
• Track real-time shopping behavior.
• Chart key purchasing trends.
• Enable merchandizer to create

promotions dynamically.

• Aggregate statistics can be
shared with shoppers:
• Allows shoppers to obtain

collaborative feedback.
• Examples include most viewed

and best selling products.

7In-Memory Computing Summit North America 2018

Challenges for Stream-Processing Architectures
• Basic stream-processing architecture:

• Challenges:
• How efficiently correlate events from each data source?
• How combine events with relevant state information to create the necessary context for analysis?
• How embed application-specific analysis algorithms in the pipeline?
• How generate feedback/alerts with low latency?
• How perform data-parallel analytics to determine aggregate trends?

8In-Memory Computing Summit North America 2018

Adding Context to Stream-Processing

• Stateful stream-processing platforms add “unmanaged” data storage to the pipeline:
• Pipeline stages perform transformations in a sequence of stages from data sources to sinks.
• Data storage (distributed cache, database) is accessed from the pipeline by application code in an

unspecified manner.
• Examples: Apama (CEP), Apache Flink, Storm

• Problems:
• There is no software architecture

for managing state information.
• This adds complexity to the

application.
• Creates a network bottleneck.
• Does not address need for

data-parallel analytics.

9In-Memory Computing Summit North America 2018

Lambda Architecture: Batch Parallel Analytics

• Lambda architecture separates stream-processing (“speed layer”) from data-parallel
analytics (“batch layer”).
• Creates queryable state, but:

• Does not enhance context
for stateful stream processing.

• Does not perform data-parallel analytics
online for immediate feedback.

• Does not lead to a “Hybrid Transactional
and Analytics Processing” (HTAP)
architecture.

10

https://commons.wikimedia.org/w/index.php?curid=34963987

How combine stream-processing
with state to simplify design,
maximize performance, and
enable fast data-parallel analytics?

In-Memory Computing Summit North America 2018

In-Memory Data Grid (IMDG)

IMDG provides a powerful platform for stateful stream-processing.
What is an IMDG?
• IMDG stores live, object-oriented data:

• Uses a key/value storage model for large object
collections.

• Maps objects to a cluster of commodity servers with
location transparency.

• Has predictably fast (<1 msec.) data access and updates.
• Designed for transparent scaling and high availability

• IMDG integrates in-memory computing with
data storage:
• Uses object-oriented execution model.
• Leverages the cluster’s computing power.
• Computes where the data lives to avoid network bottlenecks.

Logical view

Physical view

11

IMDG Storage Model

In-Memory Computing Summit North America 2018

How an IMDG Can Integrate Computation
• Each grid host runs a worker

process which executes
application-defined methods
on stored objects.
• The set of worker processes is

called an invocation grid (IG).
• IG usually runs language-

specific runtimes (JVM, .NET).
• IMDG can ship code to the IG

workers.

• Key advantages for IGs:
• Follows object-oriented model.
• Avoids network bottlenecks by

moving computing to the data.
• Leverages IMDG’s cores &

servers.

Invocation Grid

12

In-Memory Data Grid

In-Memory Computing Summit North America 2018

IMDG Runs Event Handlers for Stream-Processing

Event handlers run independently for
each incoming event:
• IMDG directs event to a specific object

using ReactiveX for low latency.
• IMDG executes multiple event

handlers in parallel for high
throughput.

13

Object

In-Memory Computing Summit North America 2018

IMDG Executes Data-Parallel Computations
Method execution implements a
parallel op. on an object collection:
• Client runs a single method on all

objects in a collection.
• Execution runs in parallel across the

grid.
• Results are merged and returned to

the client.
• Runs with lower

latency than
batch jobs.

14

Object

In-Memory Computing Summit North America 2018

A Basic Data-Parallel Execution Model

A fundamental model from
parallel supercomputing:
• Run one method (“eval”)

in parallel across many
data objects.
• Optionally merge the

results.
• Binary combining is a

special case, but…
• It runs in logN time to

enable scalable speedup

15In-Memory Computing Summit North America 2018

MapReduce Builds on This Model

• Implements “group-by”
computations.
• Example: “Determine average

RPM for all windmills by region
(NE, NW, SE, SW).”
• Runs in two data-parallel

phases (map, reduce):
• Map phase repartitions and

optionally combines source
data.

• Reduce phase analyzes each
data partition in parallel.

• Returns results for each
partition (no merging).

partitions

16In-Memory Computing Summit North America 2018

Distributed ForEach: Another Data-Parallel Model

17In-Memory Computing Summit North America 2018

• Body code performs eval and iterative merge to reduce garbage collection:

Reduced GC Time with Distributed ForEach

PMI Distributed ForEach

18In-Memory Computing Summit North America 2018

Stream-Processing with the Digital Twin Model

• Created by Michael Grieves; popularized by Gartner

• Represents each data source with an IMDG object

that holds:

• An event collection

• State information about the data source

• Logic for analyzing events, updating state, and

generating alerts

• Benefits:

• Offers a structured approach to stateful stream-processing.

• Automatically correlates incoming events by data source.

• Integrates all relevant context (events & state).

• Enables easy deployment of application-specific logic (e.g.,

ML, rules engine, etc.) for analysis and alerting.

• Provides domain for aggregate analysis and feedback.

19

Data-parallel analysis

In-Memory Computing Summit North America 2018

Some Applications for Digital Twins

A digital twin correlates incoming events with context using domain-specific algorithms to
generate alerts:

20

Application Context Events Logic Alerts
IoT devices Device status & history Device telemetry Analyze to predict

maintenance.
Maintenance
requests

Medical
monitoring

Patient history &
medications

Heart-rate, blood-
pressure, etc.

Evaluate measurements
over time windows with
rules engine.

Alerts to patient
& physician

Cable TV Viewer preferences &
history, set-top box
status

Channel change
events, telemetry

Cleanse & map channel
events for reco. engine;
predict box failure.

Viewer recom-
mendations,
repair alerts

Ecommerce Shopper preferences &
buying history

Clickstream events
from web site

Use ML to make product
recommendations.

Product list for
web site

Fraud
detection

Customer status &
history

Transactions Analyze patterns to
identify probable fraud.

Alerts to
customer & bank

In-Memory Computing Summit North America 2018

Why Use an IMDG to Host Digital Twins?

IMDG provides an excellent DT plaftorm:
• Scalable, object-oriented data storage:

• Offers a natural model for hosting digital twins.
• Cleanly separates domain logic from data-parallel

orchestration.

• Integrated, In-memory computing:
• Automatically correlates incoming events for

analysis.
• Enables both stream and data-parallel processing.

• High performance:
• Avoids data motion and associated network

bottlenecks.
• Fast and scales to handle large workloads.

• Integrated high availability:
• Uses data replication designed for live systems.
• Can ensure that computation is high av.

21In-Memory Computing Summit North America 2018

Scaling Event Ingestion with Kafka

22

• IMDG partitions digital twin objects across
servers.
• Kafka offers partitions to scale out handling

of event messages.
• Partitions are distributed across brokers.
• Brokers process messages in parallel.

• IMDG can map Kafka partitions to grid
partitions:
• IMDG specifies event-mapping algorithm to

Kafka.
• IMDG listens to appropriate Kafka partitions.

• This minimizes event handling latency.
• Avoids store-and-forward within IMDG.

In-Memory Computing Summit North America 2018

Integrating Event and Data-Parallel Processing
The IMDG:
• Posts incoming events to its respective digital

twin object.
• Runs the twin’s event handler method with low

latency.
• Event handler manages the event collection and can

use time windows for analysis.
• Event handler uses and updates in-memory state.
• Event handler can use/update off-line state.
• Event handler optionally generates alerts and

feedback to its data source.

• Runs data-parallel methods to analyze all
digital twins in real-time.
• Results can be used for both alerting and feedback.

23

Offline State Data-Parallel
Analysis

In-Memory Computing Summit North America 2018

Example: Ecommerce Shopping Site

Tracks web shoppers and provides real-
time recommendations:
• Each DT object holds clickstream of

browsed products, preferences, and
demographics.
• Event handler analyzes this data and

updates recommendations.
• Periodic data-parallel, batch analytics

across all shoppers determine aggregate
trends:
• Examples include best selling products,

average basket size, etc.
• Used for analysis and real-time feedback

24In-Memory Computing Summit North America 2018

Example: Tracking a Fleet of Vehicles

• Goal: Track telemetry from a fleet of cars or trucks.
• Events indicate speed, position, and

other parameters.
• Digital twin object stores information

about vehicle, driver, and destination.
• Event handler alerts on exceptional

conditions (speeding, lost vehicle).

• Periodic data-parallel analytics
determines aggregate fleet
performance:
• Computes overall fuel efficiency, driver

performance, vehicle availability, etc.
• Can provide feedback to drivers to optimize

operations (e.g., avoid congested areas).

25In-Memory Computing Summit North America 2018

Using Digital Twins in a Hierarchy

Tracks complex systems as hierarchy
of digital twin objects:
• Leaf nodes receive telemetry from

physical endpoints.
• Higher level nodes represent

subsystems:
• Receive telemetry from lower-level

nodes.
• Supply telemetry to higher-level nodes

as alerts.
• Allow successive refinement of real-

time telemetry into higher-level
abstractions.

26

Example: Hierarchy of Digital Twins
for a Windmill

In-Memory Computing Summit North America 2018

OOP Techniques Simplify Building Digital Twins

• Digital twin objects can use inheritance
to create specialized behaviors:

27In-Memory Computing Summit North America 2018

• Instances of objects can be organized in
a hierarchy:

Base Class

IS A

Sub-Class

Detailed Example: Heart-Rate Watch Monitoring

Goal: Track heart-rate for a large population of runners.
• Heart-rate events flow from smart watches to their respective digital twin objects for analysis.
• The analysis uses wearer’s history, activity, and aggregate statistics to determine feedback and

alerts.

28In-Memory Computing Summit North America 2018

Digital Twin Object (Java)
• Holds event collection and user’s context (age, medical history, current status, etc.):

29

public class User implements Serializable {
private int _id;
private double _height;
private double _bodyWeight;
private Gender _gender;
private int _age;
private int _averageHr;
private WorkoutProgress _status;
private int _sessionAverageMax;
private List<Medication> _medications;
private List<Long> _heartIncidents;
private List<HeartRate> _runningHeartRateTelemetry;
private long _alertTime;
private boolean _alerted;
...}

Event collection

User’s context

In-Memory Computing Summit North America 2018

Events & Alerts

• Event holds periodic telemetry sent from watch to IMDG:

• Alert holds data to be sent back to wearer and/or to medical personnel:

30

public class HeartRateEvent {
private int _userId;
private int _heartRate;
private long _timestamp;
private WorkoutType _workoutType;
private WorkoutProgress _workoutProgress;
private Event _event;
...}

public class HeartRateAlert {
private int _userId;
private String _alertType;
private String _params;
...}

In-Memory Computing Summit North America 2018

Setting Up a ReactiveX Pipeline on the IMDG

• Define a ReactiveX observer that runs on every server in the IMDG:

• Create an invocation grid that Initializes the ReactiveX observer at startup:

31

public class HeartRateObserver implements Observer<Event>, Serializable {
@Override public void onNext(Event event) {

HeartRateEvent hre = HeartRateEvent.fromBytes(event.getPayload());
hre.setEvent(event);
User.processRunningEvent(hre);} ...}

Pipeline pipeline = new Pipeline(“userCache”, “userGrid”);
GridAction action = pipeline.createRemoteObserverAction("userObserver",

new HeartRateObserver());
InvocationGrid grid = new InvocationGridBuilder(“userGrid”)

.addJar("./bin/appcode.jar")

.addStartupAction(action)

.load();

Call application

Initialize observer

In-Memory Computing Summit North America 2018

Event Handler and Event Posting

• Posting an event to the ReactiveX observer :
• The key determines which server receives the event for posting.

• Handling an event posted to the ReactiveX observer on DT twin’s server :

32

private static void processRunningEvent(HeartRateEvent hre) {
CachedObjectId id = hre.getId();
User u = (User)cache.retrieve(id, false);
...
executeRunningWorkoutAnalytics(hre, u);
...
cache.update(id, u);}

Retrieve DT object

Analyze event

Update DT object

pipeline.postEvent(makeKey(UserId),"heartRateEvent", HeartRateEvent.toBytes(
new HeartRateEvent(last, System.nanoTime(),
WorkoutType.Running, WorkoutProgress)));

In-Memory Computing Summit North America 2018

Event Analysis
• Handles an event for an active user doing a running workout:

33

private static void executeRunningWorkoutAnalytics(HeartRateEvent hre, User u) {

long start = twoWeeksAgo();

long sessionTimeout = threeHours();

SessionWindowCollection<HeartRate> swc = new

SessionWindowCollection<>(u.getRunningHeartRateTelemetry(),

heartRate -> heartRate.getTimestamp(), start, sessionTimeout);

swc.add(new HeartRate(hre.getHeartRate(), hre.getTimestamp()));

int total = 0; int windowCount = 0;

for(TimeWindow<HeartRate> window : swc) {

int avg = 0;

for(HeartRate hr : window) {avg += hr.getHeartRate();}

total += (avg/window.size());

windowCount++;}

u.setAverageHr(total/windowCount);

u.analyzeAndCheckForAlert(hre);}

Analyze event history

Analyze user’s context

Create time windows

Add event

In-Memory Computing Summit North America 2018

Analysis Techniques Enabled by Digital Twin

Enable detailed heart-rate monitoring for a high intensity exercise program:
• Example of data to be tracked:

• Exercise specifics: type of exercise, exercise-specific parameters (distance,
strides, altitude change, etc.)

• Participant background/history: age, height, weight history, heart-related
medical conditions and medications, injuries, previous medical events

• Exercise tracking: session history, average # sessions per week, average and
peak heart rates, frequency of exercise types

• Aggregate statistics: average/max/min exercise tracking statistics for all participants

• Example of logic to be performed:
• Notify participant if session history across time windows indicates need to change mix.
• Notify participant if heart rate trends deviate significantly from aggregate statistics.
• Alert participant/medical personnel if heart rate analysis across time windows indicates an

imminent threat to health.
• Report aggregate statistics to analysts and/or users.

34In-Memory Computing Summit North America 2018

Data Parallel Analysis Across all Digital Twins

• Uses IMDG’s in-memory compute engine to create aggregate statistics in real time.

• Results can be reported to
analysts and updated every
few seconds.

• Results can be used as feedback
to event analysis in digital
twin objects and/or reported
to users.

35In-Memory Computing Summit North America 2018

Computing Aggregate Data
• Performs a data-parallel computation using the IMDG’s Eval and Merge methods:

36

public class AggregateStatsInvokable implements Invokable<User, Integer,
AggregateStats> {
@Override
public AggregateStats eval(User u, Integer numUsers) {

AggregateStats userStats = new AggregateStats(numUsers);
userStats.merge(u);
return userStats;

}

@Override
public AggregateStats merge(AggregateStats mergedStats,

AggregateStats u) {
mergedStats.merge(u);
return mergedStats;

}
}

Eval method

Binary merge method

In-Memory Computing Summit North America 2018

Computing Aggregate Data (2)
• Computes running average of heart-rate by categories:

37

public void merge(AggregateStats user) {
numEvents += user.getNumEvents();
totalHeartRate18to34 += user.getTotalHeartRate18to34();
totalHeartRate35to50 += user.getTotalHeartRate35to50();
totalHeartRateOver50 += user.getTotalHeartRateOver50();
count18to34 += user.getCount18to34();
count35to50 += user.getCount35to50();
countOver50 += user.getCountOver50();

totalHeartRateBmiUnderWeight += user.getTotalHeartRateBmiUnderWeight();
totalHeartRateBmiNormalWeight += user.getTotalHeartRateBmiNormalWeight();
totalHeartRateBmiOverweight += user.getTotalHeartRateBmiOverweight();
countUnderweight += user.getCountUnderweight();
countNormalWeight += user.getCountNormalWeight();
countOverWeight += user.getCountOverWeight();

}

Creates Groups

In-Memory Computing Summit North America 2018

Running the Data-Parallel Computation

• Uses a single method to run a data-parallel computation and return results.
• Publishes merged results to an IMDG object for access by user objects and/or analysts.

38

public void run() {

NamedCache usersCache = CacheFactory.getCache(“userCache”);

NamedCache statsCache = CacheFactory.getCache(“statsCache”);

AggregateStats stats;

InvokeResult<AggregateStats> result =

usersCache.invoke(AggregateStatsInvokable.class, null, _numUsers,

TimeSpan.fromMilliseconds(10000));

stats = result.getResult();

statsCache.put(“globalStats”, stats);

}

Invoke data-parallel op

Store result in IMDG

In-Memory Computing Summit North America 2018

Data-Parallel Execution Steps

• Eval phase: each server queries local
objects and runs eval and merge
methods:
• Accessing local objects avoids data motion.
• Completes with one result object per server.

• Merge phase: all servers perform binary,
distributed merge to create final result:
• Merge runs in parallel to minimize

completion time.
• Returns final result object to client.

39In-Memory Computing Summit North America 2018

Predictable, Scalable Performance

• Digital twin model enables the IMDG to scale both event-handling and integrated
data-parallel analysis.
• Correlating events to digital twin objects creates an automatic basis for performance scaling:

• For event analysis
• For data-parallel analysis

• It enables access to each event’s context without requiring a network access.
• It also co-locates and encapsulates application-specific code using o-o techniques.

40In-Memory Computing Summit North America 2018

Avoids Network Bottlenecks

• Digital twin model avoids network bottlenecks associated with using an IMDG as a
networked cache in a stream-processing pipeline.
• External data storage requires network access to obtain an event’s context.
• Network bottleneck prevents scalable throughput.

41In-Memory Computing Summit North America 2018

Wrap-Up

Digital Twins: The Next Generation in Stateful Stream-Processing
• Challenge: Current techniques for stateful stream-processing:

• Lack a coherent software architecture for managing context.
• Can suffer from performance issues due to network bottlenecks.

• The digital twin model:
• Offers a flexible, powerful, scalable architecture for stateful stream-processing:

• Associates events with context about their physical sources for deeper introspection.
• Enables flexible, object-oriented encapsulation of analysis algorithms.

• Provides a basis for aggregate analysis and feedback.

• Scalable, data-parallel computing with an IMDG:
• Automatically correlates incoming events and processes them in parallel.
• Implements integrated (real-time), aggregate analysis for immediate feedback.

42In-Memory Computing Summit North America 2018

www.scaleoutsoftware.com

In-Memory Comput ing for Operat ional Inte l l igence

