
In-Memory Computing for

Iterative CPU-intensive

Calculations in Financial

Industry

In-Memory Computing Summit 2015

June 29-30, 2015

2Copyright © 2015 EPAM Systems

Alexandre Boudnik

Senior Solution Architect, EPAM Systems

Alexandre_Boudnik@epam.com

EPAM Big Data Competency Center

OrgCompetencyBigData@epam.com

Contacts

3Copyright © 2015 EPAM Systems

• I used to work on software development tools like compilers,

hardware emulators, and testing tools for real-time systems

•My first American job was to lead development of SQL query engine

for MPP grid in early 2000

•Now I’m working with many of the Big Data and Fast Data aspects:

• Hadoop ecosystem for enterprise (data governance, lineage)

• Streaming, complex event processing, in-memory caches and real-time

graphs processing

• Building the scalable, fault tolerant distributed systems on clusters

Who I am

4Copyright © 2015 EPAM Systems

•Out clients in financial advisers want:

• To get support for complex iterative calculations

• To get a faster response than conventional tools provide

• To have better (faster) support for what-if scenarios

• To call calculations from web-based tools and from MS Excel

•Drawbacks of conventional BI tools and SQL technologies:

• Not enough expandability (it is hard to use custom code)

• Scalability, Concurrency and Response time

The problem our customers have faced

5Copyright © 2015 EPAM Systems

Using in-memory technologies for financial calculations:

•Generalized approach to parallel recursive calculations on a grid

•Memory-efficient object data model to reduce memory footprint

•OData (hierarchal data model) on top of object data model

Techniques and Practices to Develop

6Copyright © 2015 EPAM Systems

Wealth Management

7Copyright © 2015 EPAM Systems

To manage client portfolios effectively, organizations need

to calculate various financial functions:

• Over wide period of time

• For many financial vehicles (instruments)

• Using multiple hierarchal user-defined groupings (roll-up)

• Providing ability to compare performance with standard or user

defined benchmarks

• Providing comfortable user experience (response time)

• Near-real time what-if scenarios

• Providing concurrent access for hundreds of users

Use case: Wealth Management Organizations

8Copyright © 2015 EPAM Systems

• SQL-based BI tools out-of-the box:

• Are ineffective in supporting complex calculation defined on hierarchal

structures along time dimension

• Don’t provide sufficient support for complex calculations

• Provide limited scalability

• Using the stored procedures to expand functionality is not an perfect

answer:

• Can be used for iterative calculations

• High-Level languages like java and C# are available for some platforms

• The differences in stored procedure APIs lead to vendor lock

Traditional SQL-based tools: road blocks

9Copyright © 2015 EPAM Systems

•Architecture based on Distributed In-Memory Data Grid provides high

performance, quick response and scalability in terms of concurrent

load, amount of data, and complex calculations

•There are many implementations, both proprietary and open-source,

with same computation models and very similar API

•Vendors we had considered:

• GridGain, Gigaspaces XAP, SAP Hana, MS SQL Server In-Memory 2012 and

2014, Aerospike, Clustrix, Tibco ActiveSpaces, ScaleOut Software,

Pivotal’s gemfire/sqlfire, Oracle Coherence, MongoDB, Haselcast

In-Memory Data Grid: getting out of the woods

10Copyright © 2015 EPAM Systems

• Speed-up the complex iterative CPU-intensive financial calculations:

• Fast access to in-memory data

• Fast execution of individual requests by implementing parallel versions of

calculation algorithms

•Achieve fast response under highly concurrent load:

• Load balancing

• Parallel query execution

• Distributed calculations

Rationales for In-Memory Data Grid

11Copyright © 2015 EPAM Systems

Core Solution: Architecture

Core Solution

Calculation EngineOperational Data Applications

(One Node shown)

Changes

Data

Sources

ETL

Changes

Load on start

Custom

Code

Persistent

Data

Access

Report UI

3rd Party SaaS

OData

Data

Warehouse

12Copyright © 2015 EPAM Systems

•Operational Data – represents a composition of transactional data

sources

•Calculation Engine – uses In-Memory Data Grid to performs Custom

Calculation Code on a cluster

• In-Memory Data Grid – cluster environment such as GridGain Data

Fabric or Gigaspaces XAP. Control all aspects of storing data and

distributed calculations on a cluster

•Custom Calculation Code – implements various calculation algorithms

•Persistent Store – used to store Calculation Engine’s operational data,

when In-Memory Data Grid is off

Core Solution: Components

13Copyright © 2015 EPAM Systems

• It performs one-path calculations, like:

• Cumulative and Annualized performance Reports, Allocation Reports with

different types of aggregation

• Calculation of Alpha, Beta, Average Capital Base, TWR (Time-Weighted

Return), Currency conversion

• It performs iterative calculations, like:

• IRR (Internal Rate of Return) – requires to solve nonlinear equations (~2

ms per node)

•The OData v4 (http://www.odata.org) has been implemented based

on open source Apache OLingo library (https://olingo.apache.org)

Calculation Engine Functionality

14Copyright © 2015 EPAM Systems

Typical Data Flow

Cloud

User SaaS OData Planner

HTTP Request

REST/OData

OData

HTTP Response

calculation

[parameters]

ProcessorProcessor

Call

Results

15Copyright © 2015 EPAM Systems

•Typical OData query to show TWR for last year:

$select=Name,TwrYtd&$filter=Date eq ‘2014-12-31' and CurrencyISO eq

'USD'

• In EDM file:

<field name="TwrYtd" type="Edm.Double">

twr(args.setMonthOffset(-12).setAnnualized(true))</field>

<field name="Name" type="Edm.String">

hrhy(args).name</field>

•MVEL expressions binds analytical functions to column definitions:

• MVEL parser builds AST for columns and filter

• Analytical functions request their dependencies

• Planner builds dependencies graph

OData: Binding Custom Code to Data Model

16Copyright © 2015 EPAM Systems

• Dividing – need to be sure that these is the way to divide the whole job into

independent pieces or to the pieces that at least could be executed in parallel

to some extent:

• Calculations on leaves:

• They are usually independent and thus could be performed in parallel

• Calculations and aggregation on nodes should either:

• For additive calculations like TWR – wait for all underlying calculations

• For semi-additive calculations like IRR – collect data needed to calculate – then could be done

in parallel

• Synchronization – combine individual results into result of whole job and suspend

execution of pieces until they get all their dependencies satisfied

• Callable and Future have been used since Java 5

• Recursive algorithms in parallel environment are potential victims of thread

starvation

Divide and Conquer Synchronize:

Parallel implementation of algorithms

17Copyright © 2015 EPAM Systems

•When number of nodes waiting for its prerequisites exceeds number of

available threads in fixed size Thread pool, the application slows down

•There is a technique called “continuation”, which is devised to address

thread starvation:

• Start a child task (which will possibly produce a number of child jobs), get a

task future

• Detach this current job from a worker thread, allowing it to run other jobs

• Register a completion listener on the task future, that will resume this

current job (attach it back to a worker thread)

• When resumed back - handle the child task result and return

• It is really hard to design, write the code and debug the continuation-

based implementation of recursive algorithms

Thread starvation

18Copyright © 2015 EPAM Systems

Generalized approach uses the idea of topological sort

where independent vertices have been removed. There are

two moving parts:

• Planner, which builds graph of dependencies, which is very obvious

task for tree-like structures and oriented graphs

• Processor, which is looking for independent leaves and nodes and

submit them to the grid for execution

Non-blocking Parallel Recursive Calculations

19Copyright © 2015 EPAM Systems

• Processor never uses future.get() method, it registers

completion listener instead

• When listener get control, it checks for nodes, for which it would

be the last dependence, and submit them for the execution

• When listener found the last node (root in tree-like structures) in

dependency graph, it posts waiting thread with result of whole

calculation

• When Processor can not find any submittable node, it means that

it found a cyclic dependency

How it works

20Copyright © 2015 EPAM Systems

Dependency-driven execution of recursive calculation allows to:

•Avoid thread starvation

•Use external thread (webservices’ thread in case of OData) for

synchronization

•Make parallel implementation of algorithm much more straight-

forward

• Simplify cache management for once calculated values

The City That Never Sleeps

The Grid That Never Waits

21Copyright © 2015 EPAM Systems

• Object are more expensive than a primitives, thus Integer takes 16 bytes

memory to store its value, while int takes only 4 bytes

• Most of in-memory grids offer only one data structure to store in-memory

data on a grid–cache, which is sharded map. You may significantly reduce

memory footprint by re-organizing data structures from mechanically

converted relational data structures to object model:

• Structure for storing currency conversion table could be represented like this:

• GridCache<Integer, Pair<Date, Double>> currencies;

• Or like this, using implied array index as a day since 1 Jan 1904:

• GridCache<Integer, double[]> currencies;

• When you have less than a 10% values, you may use sparse arrays:

• GridCache<Integer, DoubleMatrix1D<Double>> currencies;

Memory-efficient Object Data Model

22Copyright © 2015 EPAM Systems

•The Goldman Sachs collection framework offers a galore of very

memory-efficient collections (https://github.com/goldmansachs/gs-

collections/wiki)

Looking forward to use more open source

23Copyright © 2015 EPAM Systems

In real-life you have to keep in mind:

•How to make calculations parallel

•Design of memory-efficient object data model

•Expandable data model on top objects for easy integration

Lessons learned

24Copyright © 2015 EPAM Systems

Life insurance

25Copyright © 2015 EPAM Systems

In life insurance industry companies use Monte-Carlo

simulation to estimate the value of its policies

• Typically the process generates ~20 million (~50 cashflows * 360

months * 1000 Monte-Carlo paths) numbers for one policy, which

gives for a million policies a 20 trillion numbers or 80TB of data

• It requires about a 20 minutes for a 2000 cores to generate such data

• Then data is grouped into ~500 cohorts, which gives 20,000,000 * 500

= 10 billion numbers or only 40GB of data

• The analytics and researches use that grouped data

• The MS SQL Server simply isn’t capable to perform required grouping

on such volume of data

Use case: Monte-Carlo simulation for life insurance

26Copyright © 2015 EPAM Systems

• In the financial sector, Monte Carlo method is used to assess the value of

companies, perform risk analysis, or calculate financial derivatives. The

method relies on repeated random sampling by running simulations

multiple times in order to calculate the same probabilities heuristically.

•Monte Carlo Simulations is suited very well for In-Memory grids

•Problems that fit the Monte Carlo method are easily split into parallel

execution

•Challenges are:

• To avoid storing the whole 80TB of all generated Monte-Carlo paths

• To provide faster generation of subset of Monte-Carlo paths for what-if

scenarios

Parallel computing and Monte-Carlo

27Copyright © 2015 EPAM Systems

•Use In-Memory Data Grid to generate future cash-flows, aggregate

them by cohorts, calculate conditional tail expectations, store and

query results in same computer cluster where data are evenly

distributed between cluster nodes, provides high performance, quick

response and scale-out capability.

•The proposed solution utilizes mixed computational paradigm:

• An Object mode, where objects are stored in distributed collections

(maps, lists, multidimensional arrays) for complex iterative calculations

and hierarchal roll-ups

• A SQL mode for easy integration with report generators and BI tools, where

collections of objects are treated as relational tables

In-Memory Data Grid: The Solution

28Copyright © 2015 EPAM Systems

• Policy distribution

• Cash-flow generation and:

• intra-node aggregation

• Inter-node aggregation

• Redistribution and Storing

• Querying and Analyzing

Data Layout

In-Memory Data Grid

Table1

G A

G A

G A

P P
1

A

1

D

P P
1

B

2

A

P P
1

C

1

E

Table2

P
1

A

P
1

B

P
1

C

SQL

...

...

...

...

G – cash-flows generator

A – cash-flows aggregator

P1
a partition A segment 1

29Copyright © 2015 EPAM Systems

•Policy distribution - policies are partitioned to maximize data

colocation, and to prevent data skew; partitions are dynamically

divided into fixed size segments. This technique called partition

overflow and it is a tradeoff between uniformity of distribution and

aggregation complexity

• Intra-node aggregation – as soon as cash-flow generation is done, it get

aggregated within the partition segment

• Inter-node aggregation - intermediate aggregated results from the

segments are combined together within whole partition

•Redistribution and Storing - to make even distribution and thus

effective distributed querying/calculations possible, data have to be

split into relatively small pieces and stored on all nodes

In-Memory Data Grid: The Solution (cont.)

30Copyright © 2015 EPAM Systems

•Querying and Analyzing

• An Object mode, a Distributed Executor Service is used for complex

iterative calculations and hierarchal roll-ups

• In SQL Mode each node contains a subset of the data allowing to leverage a

whole grid to process entire data set. Obviously, sequential scans are

performed in parallel. Joins are executed in parallel with technics known

as broadcasting and re-distribution

• Support for what-if scenarios

• Depends on what user has changed in cashflow definition, the system can

invalidate only affected partitions and avoid of costly recalculation of

entire set of Monte-Carlo paths

In-Memory Data Grid: The Solution (cont.)

31Copyright © 2015 EPAM Systems

•Batch processing and core SQL doesn’t scale to full blown simulations\

•Hadoop stack doesn’t fit near real-time expectations even with

moderate data volumes

• If brute-force doesn’t work – don’t use it. At all

•Replace horizontal scaling with creative re-thinking of data models

and processes organization

Lessons learned

32Copyright © 2015 EPAM Systems

Q & A

33Copyright © 2015 EPAM Systems

In-Memory Computing

for Iterative CPU-

intensive Calculations

in Financial Industry
ALEXANDRE BOUDNIK

SENIOR SOLUTION ARCHITECT

EPAM SYSTEMS

